Python如何调整数组的形状
admin
2024-04-26 22:06:44
0

文章目录

    • 更改维度
    • 调整坐标轴
    • 牛刀小试
    • Numpy函数

调整形状
调整形状reshape, resize, flatten, ravel, squeeze
调整坐标轴transpose, swapaxes

更改维度

数组中的数据在内存里是固定的,但计算时的排列方式却可以随时更改,这也是数组的强大之处。其中,reshaperesize功能相同,区别是前者返回新数组,后者则直接修改原始数组。

>>> x = np.arange(12)
>>> y = x.reshape(2,6)
>>> print(x)
[ 0  1  2  3  4  5  6  7  8  9 10 11]
>>> print(y)
[[ 0  1  2  3  4  5][ 6  7  8  9 10 11]]
>>> x.resize(2,6)
>>> print(x)
[[ 0  1  2  3  4  5][ 6  7  8  9 10 11]]

-1表示自动规划某一轴的尺寸,例如

>>> x.reshape(3,-1)
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])

flattenravel相当于reshape(-1),即将数组展平为一维数组。

squeeze则比flatten稍微温和一点,会删除尺寸为1的维度,例如

>>> x.resize(1,3,4,1,1)
>>> print(x)
[[[[[ 0]][[ 1]][[ 2]][[ 3]]][[[ 4]][[ 5]][[ 6]][[ 7]]][[[ 8]][[ 9]][[10]][[11]]]]]

上面的这个x有太多层括号,看上去毫无卵用,这个时候可以用squeeze

>>> x.squeeze()
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])

有木有瞬间清爽了许多。

调整坐标轴

transposeswapaxes用于调整坐标轴,如果用矩阵的视角去理解,那么大致相当于转置。

>>> x
array([[ 0,  1,  2,  3,  4,  5],[ 6,  7,  8,  9, 10, 11]])
>>> x.T
array([[ 0,  6],[ 1,  7],[ 2,  8],[ 3,  9],[ 4, 10],[ 5, 11]])
>>> x.transpose(1,0)
array([[ 0,  6],[ 1,  7],[ 2,  8],[ 3,  9],[ 4, 10],[ 5, 11]])

其中,transpose(1,0)表示将第一个坐标轴和第0个坐标轴交换位置。

牛刀小试

熟练掌握数组形状的变换方法,也就相当于熟悉了张量的运算法则,这对于数据科学来说是非常重要的基础技能。

例如,现有300张图像200x100的图像,想要得到每张图像的列质心。传统思路肯定是跑循环,但众所周知Python的循环效率比较慢,所以最佳方法是300张一起做,无非就是300x200x100的张量,对第二个坐标轴进行质心提取而已

imgs = np.random.rand(300,200,100)
xs = np.arange(100)
xCen = np.matmul(imgs, xs) / np.sum(imgs, axis=2)

其中,xCen就是所要求的质心。

当然,也可以用更加直观的做法

xCen = imgs.reshape(-1,100)@xs / np.sum(imgs.reshape(-1,100), axis=1)
xCen = xCen.reshape(300,200)

Numpy函数

对于上面这几种数组的内置方法,有一些可直接从numpy中调用,这样的好处是可以直接对非数组格式的数据进行操作,例如

>>> x = list(range(12))
>>> np.reshape(x, (3,4))
array([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])

其中,x是一个列表,np.reshape会自动将其转化为数组后再行操作。

同样地,flatten也可以完成数组展平的任务

>>> x = [[i, i+1] for i in range(5)]
>>> x
[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]
>>> np.ravel(x)
array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5])

相关内容

热门资讯

张波:转型不能急于求成,要“细... 我们更要关注的不是技术是否会替代人,而是人如何借技术实现更高层次突破。文|《中国企业家》记者 李艳艳...
2026年A股逻辑,首席经济学... 如果你关注中国经济、关心A股市场,那么在2025年,你对“中国资产重估”这个词一定不陌生。当中国的科...
一场国家级夏季“村晚”示范展示... 近日,“全网最忙五人组”及其背后的百度文库《10000中国普通人名大全》牵出诸多乱象。其中的“张吉惟...
日本10月外汇储备为12389... 11月8日消息,日本10月外汇储备为12389.5亿美元,前值12549亿美元。
大商所、郑商所夜盘收盘多数上涨... 11月7日消息,大商所、郑商所夜盘收盘多数上涨,焦炭、烧碱等涨超2%,PTA、棉花等涨超1%,PP、...
网易游戏深陷贪腐风波,两人已辟... 11月7日消息,今日多家媒体报道称“网易高管内部严查贪腐,多名高管被调查”。消息发布后,舆论迅速发酵...
杉杉股份:控股股东杉杉集团65... 11月7日消息,杉杉股份公告,公司控股股东杉杉集团因融资融券业务债务逾期,其通过国泰君安证券客户信用...
现货白银日内涨幅扩大至2%,现... 11月7日消息,现货白银日内涨幅扩大至2%,现报31.8美元/盎司。
安徽夫妇做冲锋衣,大卖20个亿... 订阅 快刀财经 ▲ 做您的私人商学院户外黑马,走出平替。作者 :韩璐来源: 21世纪商业评论(ID:...
跨年的经济 【预见经济:拾贰月】秋收冬藏。海外方面,AI科技是否“泡沫化”的争议不断,但其投资逐步向上游电力、下...